Closed-neighbourhood anti-Sperner graphs
نویسندگان
چکیده
منابع مشابه
Orphan complexes of neighborhood anti-Sperner graphs
We introduce and study a class of simplicial complexes, the orphan complexes, associated to simple graphs whose family of (open or closed) vertex-neighborhoods are anti-Sperner. Under suitable restrictions, we show that orphan complexes of such graphs are always shellable and provide a characterization of graphs in terms of induced forbidden subgraphs contained in this restricted subfamily.
متن کاملEnumerating Labelled Graphs with Certain Neighborhood Properties
Properties of (connected) graphs whose closed or open neighborhood families are Sperner, anti-Sperner, distinct or none of the proceeding have been extensively examined. In this paper we examine 24 properties of the neighborhood family of a graph. We give asymptotic formulas for the number of (connected) labelled graphs for 12 of these properties. For the other 12 properties, we give bounds for...
متن کاملConstructing and classifying neighborhood anti-Sperner graphs
For a simple graph G let NG(u) be the (open) neighborhood of vertex u ∈ V (G). Then G is neighborhood anti-Sperner (NAS) if for every u there is a v ∈ V (G)\{u} with NG(u) ⊆ NG(v). And a graph H is neighborhood distinct (ND) if every neighborhood is distinct, i.e., if NH(u) 6= NH(v) when u 6= v, for all u and v ∈ V (H). In Porter and Yucas [3] a characterization of regular NAS graphs was given:...
متن کاملDiierent Capacities of a Digraph Jj Anos Kk Orner
The Shannon capacity of every induced subgraph of a perfect graph equals its clique number. However, for the co{normal powers of an odd cycle the super{multiplicativity of the clique number makes the determination of capacity one of the hardest problems in combinatorics. We study the asymptotic growth of induced subgraphs of some particular type in powers of a xed graph. In case of a simple gra...
متن کاملSperner capacities
We determine the asymptotics of the largest family of qualitatively 2{independent k{ partitions of an n{set, for every k > 2. We generalize a Sperner-type theorem for 2{partite sets of KK orner and Simonyi to the k{partite case. Both results have the feature that the corresponding trivial information-theoretic upper bound is tight. The results follow from a more general Sperner capacity theorem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 38 شماره
صفحات -
تاریخ انتشار 2007